Plots the 3 tabular data types (A-C) generated by the featureCoverage function. It accepts data from single or many features (e.g. CDSs) and samples (BAM files). The coverage from multiple features will be summarized using methods such as mean, while the data from multiple samples will be plotted in separate panels.

plotfeatureCoverage(covMA, method = mean, scales = "fixed", extendylim=2, 
                    scale_count_val = 10^6)

Arguments

covMA

Object of class data.frame generated by featureCoverage function.

method

Defines the summary statistics to use when covMA contains coverage data from multiple features (e.g. transcripts). The default calculates the mean coverage for each positon and/or bin of the corresponding coverage vectors.

scales

Scales setting passed on to the facet_wrap function of ggplot2. For details see ggplot2::facet_wrap. The default fixed assures a constant scale across all bar plot panels, while free uses the optimum scale within each bar plot panel. To evaluate plots in all their details, it may be necessary to generate two graphics files one for each scaling option.

extendylim

Allows to extend the upper limit of the y axis when scales=fixed. Internally, the function identifies the maximum value in the data and then multiplies this maximum value by the value provided under extendylim. The default is set to extendylim=2.

scale_count_val

Scales (normalizes) the read counts to a fixed value of aligned reads in each sample such as counts per million aligned reads (default is 10^6). For this calculation the N_total_aligned values are used that are reported in the input data.frame generated by the upstream featureCoverage function. Assign NULL to turn off scaling.

Value

Currently, the function returns ggplot2 bar plot graphics.

Author

Thomas Girke

See also

featureCoverage

Examples

## Construct SYSargs2 object from param and targets files 
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl", package="systemPipeR")
args <- loadWorkflow(targets=targets, wf_file="hisat2/hisat2-mapping-se.cwl", 
                  input_file="hisat2/hisat2-mapping-se.yml", dir_path=dir_path)
args <- renderWF(args, inputvars=c(FileName="_FASTQ_PATH1_", SampleName="_SampleName_"))
args
#> Instance of 'SYSargs2':
#>    Slot names/accessors: 
#>       targets: 18 (M1A...V12B), targetsheader: 4 (lines)
#>       modules: 1
#>       wf: 0, clt: 1, yamlinput: 7 (inputs)
#>       input: 18, output: 18
#>       cmdlist: 18
#>    Sub Steps:
#>       1. hisat2-mapping-se (rendered: TRUE)
#> 
#> 

if (FALSE) {
## Run alignments
args <- runCommandline(args, dir = FALSE, make_bam = TRUE)
outpaths <- subsetWF(args, slot = "output", subset = 1, index = 1)

## Features from sample data of systemPipeRdata package
library(GenomicFeatures)
file <- system.file("extdata/annotation", "tair10.gff", package="systemPipeRdata")
txdb <- makeTxDbFromGFF(file=file, format="gff3", organism="Arabidopsis")

## (A) Generate binned coverage for two BAM files and 4 transcripts
grl <- cdsBy(txdb, "tx", use.names=TRUE)
fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4], resizereads=NULL, 
                    readlengthrange=NULL, Nbins=20, method=mean, fixedmatrix=FALSE, 
                    resizefeatures=TRUE, upstream=20, downstream=20, 
                    outfile="results/featureCoverage.xls")
plotfeatureCoverage(covMA=fcov, method=mean, scales="fixed", scale_count_val=10^6)

## (B) Coverage matrix upstream and downstream of start/stop codons
fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4], resizereads=NULL, 
                    readlengthrange=NULL, Nbins=NULL, method=mean, fixedmatrix=TRUE, 
                    resizefeatures=TRUE, upstream=20, downstream=20, 
                    outfile="results/featureCoverage_UpDown.xls")
plotfeatureCoverage(covMA=fcov, method=mean, scales="fixed", scale_count_val=10^6)

## (C) Combined matrix for both binned and start/stop codon 
fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4], resizereads=NULL, 
                    readlengthrange=NULL, Nbins=20, method=mean, fixedmatrix=TRUE, 
                    resizefeatures=TRUE, upstream=20, downstream=20, 
                    outfile="results/test.xls")
plotfeatureCoverage(covMA=fcov, method=mean, scales="fixed", scale_count_val=10^6)

## (D) Rle coverage objects one for each query feature
fcov <- featureCoverage(bfl=BamFileList(outpaths[1:2]), grl=grl[1:4], resizereads=NULL, 
                    readlengthrange=NULL, Nbins=NULL, method=mean, fixedmatrix=FALSE, 
                    resizefeatures=TRUE, upstream=20, downstream=20, 
                    outfile="results/RleCoverage.xls")
}