systemPipeR 2.3.4
Time: Jun032022_1507s52
library(systemPipeR)
[1] "systemPipeR" "ShortRead" "GenomicAlignments" "SummarizedExperiment" "Biobase"
[6] "MatrixGenerics" "matrixStats" "BiocParallel" "Rsamtools" "Biostrings"
[11] "XVector" "GenomicRanges" "GenomeInfoDb" "IRanges" "S4Vectors"
[16] "stats4" "BiocGenerics" "stats" "graphics" "grDevices"
[21] "utils" "datasets" "methods" "base"
Time: Jun032022_1507s52
mapply(function(x, y) write.csv(x, y), split(iris, factor(iris$Species)), file.path("results", paste0(names(split(iris, factor(iris$Species))), ".csv")))
$setosa
NULL
$versicolor
NULL
$virginica
NULL
Time: Jun032022_1507s52
gzip -c results/setosa.csv > results/SE.csv.gz
Time: Jun032022_1507s52
gzip -c results/versicolor.csv > results/VE.csv.gz
Time: Jun032022_1507s52
gzip -c results/virginica.csv > results/VI.csv.gz
Time: Jun032022_1507s52
gunzip -c ./results/gzip/SE.csv.gz > results/SE.csv
Time: Jun032022_1507s52
gunzip -c ./results/gzip/VE.csv.gz > results/VE.csv
Time: Jun032022_1507s52
gunzip -c ./results/gzip/VI.csv.gz > results/VI.csv
Time: Jun032022_1507s52
df <- lapply(getColumn(sal, step = "gunzip", "outfiles"), function(x) read.delim(x, sep = ",")[-1])
df <- do.call(rbind, df)
stats <- data.frame(cbind(mean = apply(df[, 1:4], 2, mean), sd = apply(df[, 1:4], 2, sd)))
stats$species <- rownames(stats)
plot <- ggplot2::ggplot(stats, ggplot2::aes(x = species, y = mean, fill = species)) + ggplot2::geom_bar(stat = "identity", color = "black", position = ggplot2::position_dodge()) + ggplot2::geom_errorbar(ggplot2::aes(ymin = mean - sd, ymax = mean + sd), width = 0.2, position = ggplot2::position_dodge(0.9))